

One Page Everywhere
Fluid, Responsive Design with Semantic.gs

Finished Responsive Site

The Semantic Grid System

●Grid System
●Fluid or Fixed

●Responsive
●Semantic

●Sass or LESS

Grid Systems

Grid System Fixed Size

Grid System Fixed Size

Semantic.gs: Fixed or Fluid

// Specify number of columns, set column and gutter widths

$columns: 12;

$column-width: 60;

$gutter-width: 20;

// Remove the definition below for a pixel-based layout

$total-width: 100%;

Grid System Clutter

<body>
 <div class="container_12">

 <h1 class="grid_4 push_4">
 960 Grid System
 </h1>
 <!-- end .grid_4.push_4 -->

 <p id="description" class="grid_4 pull_4">
 ...
 </p>
 <!-- end #description.grid_4.pull_4 -->

Grid System Clutter

<body>
 <div class="container_12">

 <h1 class="grid_4 push_4">
 960 Grid System
 </h1>
 <!-- end .grid_4.push_4 -->

 <p id="description" class="grid_4 pull_4">
 ...
 </p>
 <!-- end #description.grid_4.pull_4 -->

Semantic.gs: Layout in Stylesheets

<body>

 <div id="main-content">

 <header id="banner">

 <h1> … </h1>

 </header>

 <section id="history">

 <h2>History</h2>

 <p> … </p>

 </section>

#banner {

 @include column(12);

 padding-top: 3em; }

#history {

 @include column(6); }

#contact {

 @include column(6); }

Semantic.gs Source Code

Sass

$beige: #FDFDFD;

$outer-pad: 5%;

body {

 background: $beige;

 font-weight: 300;

 line-height: 1.5em;

}

#main-content {

 padding-right: $outer-pad;

 padding-left: $outer-pad;

}

body {

 background: #fdfdfd;

 font-weight: 300;

 line-height: 1.5em;

}

#main-content {

 padding-right: 5%;

 padding-left: 5%;

}

Semantic.gs: Responsive (iPhone)

Semantic.gs: Responsive (800x600)

Semantic.gs: Responsive (iPad)

Semantic.gs: Responsive (1920x1080)

Beyond the Grid

Media Queries

Media Queries: Breakpoint @ 900px

@media screen and (max-width:
900px) {

 #history {

 @include column(12);

 }

 #contact {

 @include column(12);

 }

}

Choosing Media Query Breakpoints

1. Start big and go to small

2. Shrink window until something looks funky

3. Create a breakpoint, fix what looks funky

4. Repeat from #2

5. No need to worry about specific devices!

Media Queries: Breakpoint @ 480px

Media Queries: Breakpoint @ 360px

Media Queries: Breakpoint @ 360px

@media screen and (max-width:
360px) {

 h1 { font-size: 1.8em; }

 h2 { font-size: 1.5em; }

 #headshot {

 float: none;

 padding-right: 0;

 padding-left: 0;

 width: 100%; }

}

Fixes for Old Internet Explorers

<head>

...

 <!--[if lt IE 9]>

 <script type="text/javascript" src="js/modernizr.js">

 </script>

 <script type="text/javascript" src="js/respond.min.js">

 </script>

 <![endif]-->

…

</head>

Things to Watch Out For

● Right and left padding and margins on grid elements
can be finicky. Best to just wrap them with a div.

● Image sizing: small screens get large images and
have to scale the images down.

● Can't really re-order sections.

Some Useful Utilities

● Semantic.gs: The Semantic Grid System
– http://semantic.gs

● Sass: Syntactically Awesome Stylesheets
– http://sass-lang.com/

● Chrome Window Resizer Extension
– https://chrome.google.com/webstore/detail/kkelicaakdanhinjdeammmilcgefonfh

● Modernizr
– http://modernizr.com/

● Respond.js
– https://github.com/scottjehl/Respond

http://semantic.gs/
http://sass-lang.com/
https://chrome.google.com/webstore/detail/kkelicaakdanhinjdeammmilcgefonfh
http://modernizr.com/
https://github.com/scottjehl/Respond
http://semantic.gs/
http://sass-lang.com/
https://chrome.google.com/webstore/detail/kkelicaakdanhinjdeammmilcgefonfh
http://modernizr.com/
https://github.com/scottjehl/Respond

Additional Credits

● iPhone screenshots simulated using iPhony
– http://www.marketcircle.com/iphoney/

● iPad screenshots simulated using iPad Peek
– http://ipadpeek.com/

● I can has cheeseburger?
– http://icanhascheezburger.com/

http://www.marketcircle.com/iphoney/
http://ipadpeek.com/
http://icanhascheezburger.com/
http://www.marketcircle.com/iphoney/
http://ipadpeek.com/
http://icanhascheezburger.com/

Additional Resources for Responsive
and Mobile Web Design

● LukeWroblewski @lukew http://www.lukew.com/

http://www.lukew.com/
http://www.lukew.com/

Contact Me

● Meatspace: Ben Rousch
● Email: brousch@gmail.com
● Twitter: @brousch
● Google+

– https://plus.google.com/102663141609195877664/

mailto:brousch@gmail.com
http://twitter.com/brousch
https://plus.google.com/102663141609195877664/
mailto:brousch@gmail.com
http://twitter.com/brousch
https://plus.google.com/102663141609195877664/

One Page Everywhere
Fluid, Responsive Design with Semantic.gs

Hello. My name is Ben Rousch. I'm the entire IT
department including the Manager of Information
Systems for Van Dam Iron Works.

I also help organize and run a few of the local user and
technical groups in West Michigan.

I've been making websites since I first discovered the
Internet at The University of Michigan about 15 years
ago.

Today I'm going to talk about a few of the tools and
techniques you can use to make websites which will
work across a variety of screen sizes and devices.
This is often called “Responsive Design.”

Finished Responsive Site

To do this, I'm going to introduce you to a small
website I created for my friend Dr. Itharat. As I think
you'll see, this website looks good on any size
screen or device, and it wasn't very difficult to make it
so.

One of the tools I used is called The Semantic Grid
System, or semantic.gs. So let's start by talking
about that.

The Semantic Grid System

●Grid System
●Fluid or Fixed

●Responsive
●Semantic

●Sass or LESS

The Semantic Grid System by default is a 12 column,
960 pixel grid. It can be fluid or fixed width. It works
well with responsive designs. It works well with
semanticaly-named elements. And it uses SASS or
LESS to save you some CSS coding time.

Don't worry, I'll go into more detail on a few of these
terms later.

Grid Systems

CSS grid systems have been around for a while. I've
used Blueprint in the past, but there are many others
available. Today I'm going to pick on The 960 Grid
system.

Because keeping a lot of different elements lined up in
CSS is hard, the general idea is that the grid system
gives you a framework of columns and gutters to
help you line things up nicely on your page.

Grid System Fixed Size

But there are a couple of problems with the typical grid
system:

First, they're usually a fixed width. Often 960 pixels.
This does not lend itself well to responsive design,
which needs to adapt to many different screen sizes.

Here is the 960 grid on a large screen monitor. I think
the empty areas on the sides are pretty excessive.

Grid System Fixed Size

Here is the same site on an iPhone.

I don't think I need to say anything about how this

looks.

Semantic.gs: Fixed or Fluid

// Specify number of columns, set column and gutter widths

$columns: 12;

$column-width: 60;

$gutter-width: 20;

// Remove the definition below for a pixel-based layout

$total-width: 100%;

In contrast, The Semantic Grid System lets you use a
fixed size if you want to, but it can also provide a fluid
grid for you.

Fluid means that the sizes of elements change as the
width of the screen changes. Instead of pixels, you
use percentages and EMs to lay out element sizes
and positions.

With semantic.gs, you can switch between fixed and
fluid simply by commenting out this one line in your
stylesheet.

Grid System Clutter

<body>
 <div class="container_12">

 <h1 class="grid_4 push_4">
 960 Grid System
 </h1>
 <!-- end .grid_4.push_4 -->

 <p id="description" class="grid_4 pull_4">
 ...
 </p>
 <!-- end #description.grid_4.pull_4 -->

Another problem with typical grid systems is they
clutter up your HTML with extra divs and span or grid
properties.

Here's some of the HTML from that 960Grid page we
just saw.

Grid System Clutter

<body>
 <div class="container_12">

 <h1 class="grid_4 push_4">
 960 Grid System
 </h1>
 <!-- end .grid_4.push_4 -->

 <p id="description" class="grid_4 pull_4">
 ...
 </p>
 <!-- end #description.grid_4.pull_4 -->

This is layout stuff. It really doesn't belong in your
HTML. It belongs in your stylesheets. And that's
where The Semantic Grid System puts it.

Semantic.gs: Layout in Stylesheets

<body>

 <div id="main-content">

 <header id="banner">

 <h1> … </h1>

 </header>

 <section id="history">

 <h2>History</h2>

 <p> … </p>

 </section>

#banner {

 @include column(12);

 padding-top: 3em; }

#history {

 @include column(6); }

#contact {

 @include column(6); }

This is a snippet of HTML and Sass from the Dr.
Itharat website. You can see the column information
is in the stylesheet. There's no sign of it in the HTML.

Semantic.gs Source Code

The program that enables this magic is incredibly
small. It's only about 50 lines of code which defines a
Sass mixin.

Sass

$beige: #FDFDFD;

$outer-pad: 5%;

body {

 background: $beige;

 font-weight: 300;

 line-height: 1.5em;

}

#main-content {

 padding-right: $outer-pad;

 padding-left: $outer-pad;

}

body {

 background: #fdfdfd;

 font-weight: 300;

 line-height: 1.5em;

}

#main-content {

 padding-right: 5%;

 padding-left: 5%;

}

Sass is a tool that extends regular CSS by giving you
nice features such as variables and math
capabilities. It takes your SCSS code, combines it
with the semantic.gs mixin, and generates the plain
old CSS for your website.

Here is a snippet of SCSS from the Dr. Itharat website
showing how variables get compiled to values in the
final CSS.

Semantic.gs: Responsive (iPhone)

Moving on to what responsive means. As I mentioned
earlier, “responsive” refers to a website's ability to
adapt to different screen resolutions, sizes, and
devices.

Semantic.gs: Responsive (800x600)

A typical grid system works well for a typical sized
desktop or laptop screen, but it doesn't work well for
very large screens or smartphones.

Semantic.gs: Responsive (iPad)

This is partly because the grid is defined in the HTML,
which means you can't change it on the fly without
resorting to Javascript tricks or completely different
versions of the HTML for different sized screens.

Semantic.gs: Responsive (1920x1080)

These were screenshots of the Dr. Itharat website on
an iPhone, at 800x600 resolution, on an iPad, and at
1920x1080 or HD resolution.

One more time

* show them again *

Beyond the Grid

So The Semantic Grid System is what gives us an
easy way to lay things out and have them change
size as the screen size changes, but what about
when we need to drastically change the layout, such
as when we go from 2 columns to 1 in the Dr Itharat
website?

Media Queries

That's where a relatively new CSS feature called
Media Queries comes in.

Media queries let you specify new values for CSS
elements depending on whether certain criteria are
met. For this page, I am only checking whether the
width of the viewport is below a certain value.

Here is the large version of the site.

Media Queries: Breakpoint @ 900px

@media screen and (max-width:
900px) {

 #history {

 @include column(12);

 }

 #contact {

 @include column(12);

 }

}

When the site drops below 900 pixels, this media
query kicks in. It changes the number of columns
occupied by the History and Contact sections from 6
to 12, effectively making them each take up the full
width of the screen instead of half.

Nothing else changes here. All of the font sizes stay
the same and the image size is still 40% of the
History column width.

So how do I figure out where to make a media query
breakpoint?

Choosing Media Query Breakpoints

1. Start big and go to small

2. Shrink window until something looks funky

3. Create a breakpoint, fix what looks funky

4. Repeat from #2

5. No need to worry about specific devices!

I like to start with the largest version of the website and shrink it.

When some element of the site starts to look too cramped or
overflows its bounds, that's where you create a media query
breakpoint.

You then change things like your font sizes or element widths until
the site looks good, and start shrinking it again.

This tends to go pretty fast because at each breakpoint you're not re-
designing the whole site, you're making the minimum changes
needed to make it look good again.

I should note that many other people like to start with a mobile-
optimized version of the website and make media query
breakpoints as the site gets bigger. I suggest you try it both ways
and see which method you prefer.

One of the best things about this technique is that you don't need to
worry about specific devices, you're just going by how your site
looks at each width.

Media Queries: Breakpoint @ 480px

The image on the left shows the web site at a width of
about 481 pixels. You can see the title has reached
the right edge of the page and is about to wrap to a
fourth line. Also the text to the left of the picture is
getting cramped. This is a good point for another
media query break point.

The image on the right is at 479 pixels width and has
had several changes to font sizes so things will look
good for a while as we shrink it further.

Media Queries: Breakpoint @ 360px

This time the image on the left is at a width of 361
pixels. Things are getting pretty cramped again, so
it's time for a breakpoint.

The image on the right is at 359 pixels width. You can
see we've blown up the picture to 100% of the page
width and made a few font size tweaks so it once
again looks good.

Media Queries: Breakpoint @ 360px

@media screen and (max-width:
360px) {

 h1 { font-size: 1.8em; }

 h2 { font-size: 1.5em; }

 #headshot {

 float: none;

 padding-right: 0;

 padding-left: 0;

 width: 100%; }

}

Here is the SCSS code for that 360 pixel media query
breakpoint. You can see it's just the changes we
want to tweak to make it look right. We don't need to
redefine the entire style.

Media queries are relatively new, so they don't work on
crusty old browsers like Internet Explorer 6, 7, or 8.
So do we just say forget those pitiful people stuck in
the past? Of course not. Much of Dr I's audience is
likely to be people still running Windows XP on a
decade old computer handed down to them by their
grandkids.

Fixes for Old Internet Explorers

<head>

...

 <!--[if lt IE 9]>

 <script type="text/javascript" src="js/modernizr.js">

 </script>

 <script type="text/javascript" src="js/respond.min.js">

 </script>

 <![endif]-->

…

</head>

Luckily there is an easy fix for enabling new-fangled
CSS3 and HTML5 features in non-compliant
browsers. Here I'm using the Modernizr and
respond.js projects to make it all work well in Internet
Explorer.

Things to Watch Out For

● Right and left padding and margins on grid elements
can be finicky. Best to just wrap them with a div.

● Image sizing: small screens get large images and
have to scale the images down.

● Can't really re-order sections.

There a few things you need to watch out for as you design your
responsive site using The Semantic Grid System.

The first is right and left padding and margins on elements that are
columns. Your columns are actually defined by margins after
they're compiled, so creating additional margins tends to make
things not work right. It's best to just wrap those elements in a div
and add the margins or padding to the div.

The second is image sizing. To make the website look good on a
large screen you sometimes need large images. Using just the
methods I've mentioned here, your mobile-sized website will use
the same big images and have to scale them down. This is not the
best use of bandwidth or low power processors, but solutions to
this problem are not ready yet.

The third thing is that you can't really re-order your sections. In the
Dr. Itharat site, The header will always come before the history,
which will always come before the Contact Info.

Some Useful Utilities

● Semantic.gs: The Semantic Grid System
– http://semantic.gs

● Sass: Syntactically Awesome Stylesheets
– http://sass-lang.com/

● Chrome Window Resizer Extension
– https://chrome.google.com/webstore/detail/kkelicaakdanhinjdeammmilcgefonfh

● Modernizr
– http://modernizr.com/

● Respond.js
– https://github.com/scottjehl/Respond

Here are most of the projects and tools I used today.

Additional Credits

● iPhone screenshots simulated using iPhony
– http://www.marketcircle.com/iphoney/

● iPad screenshots simulated using iPad Peek
– http://ipadpeek.com/

● I can has cheeseburger?
– http://icanhascheezburger.com/

And a few credits for things I used to make today's
presentation.

Additional Resources for Responsive
and Mobile Web Design

● LukeWroblewski @lukew http://www.lukew.com/

And here is the best resource I have found for keeping
up on mobile and responsive web design. Seriously,
follow this guy on Twitter.

Contact Me

● Meatspace: Ben Rousch
● Email: brousch@gmail.com
● Twitter: @brousch
● Google+

– https://plus.google.com/102663141609195877664/

And that's all I've got. Feel free to contact me if you
have questions or comments.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

